

Enhancing Wireless Data

January, 2009

Enhancing Wireless Data

By extending the intelligence of the network down to the user equipment, Mobidia provides:

- Increased radio frequency (RF) utilization and conservation of radio access network (RAN), backhaul resources
- Distributed data traffic management solutions
 - Uplink and Downlink
 - Application-awareness
- Enhanced user experiences
 - Performance and consistency of service
- Network intelligence sourced from the user equipment

Leveraging the power of millions of **smartphones** and **connected laptops**

Mobidia Company Overview

- Vancouver, BC based; venture-funded software company
 - 40 employees
 - \$16.4 million raised
 - Successful tier 1 European and North American carrier trials
- Experienced, entrepreneurial team with wireless expertise
 - Derek Spratt, president & ceo
 - » Intrinsyc Software, PCS Wireless, Motorola
 - Lawrence Chee, vice president Engineering
 - » PMC-Sierra, Seiko Epson
 - Chris Hill, vice president marketing
 - » Microsoft, General Electric
 - Al Larmour, vice president business development
 - » IP Applications, EXL Information Corp., Data General
 - Chris Welsh, finance
 - » Accenture, Ballard Power Systems, Vlinx

Majority Investors- BDC, Discovery Capital, BC Advantage Fund

Mobile Data Network Dilemma

- Data growth needed for corporate growth
 - But capital and operational costs required to scale to meet customer experience
 - And continued and growing need to manage capital and operational costs for profitability
- Market dynamics starting to stress the network
 - Vodafone sees 58% growth (year over year) in mobile broadband subscribers
 - Aggressive pricing plans available globally
 - USB laptop modems are flying off the shelves
 - Mass market smartphones are here (the \$200 iPhone)
- Usage is not even
 - UK Operator: 2% of users drive 90% of data usage
 - German and S. African Operator: 5% of users drive 95% of data usage
 - Laptop traffic, video, peer-to-peer exceedingly dominant consumers
 - Uplink traffic from laptops and smartphones a growing challenge

Wireless Operators' Needs

- Increase 3G access and capacity
 - While decreasing capital and operating costs
- Improve user experiences, sophisticated and "internet quality"
 - Access and connectivity
 - Video, voice-over-internet protocol (VOIP), and other data services
- Obtain deeper understanding of data usage
 - Per user, per app, per service, per network basis
 - Information for every app flow
 - Device status including signal quality, # of users/base station, cell id, etc.
- Proactively manage uplink and downlink traffic per user or groups
 - Bandwidth shaping, quotas, re-direction, caps, throttling, content control
 - Based on protocol-specific, state-based, and user-specific traffic flow analysis
- Deliver differentiated and innovative billing model options

Mobidia's Core Technology

Intelligent laptop and handset software

 Extends the intelligence of the network to the user equipment

 Leverages the power of the billions of smartphones and laptops on the wireless networks

Reliable wireless transport

- Transparently proxies transmission control protocol (TCP) over air-link, backhaul and RAN
- Utilizes standard UDP protocol
- Will increase TCP efficiency on equipment not running Mobidia software

Carrier grade server component

- Stand-alone or integrated with existing equipment
- Scalable, available, reliable

Increase Capacity Utilization

- Shapes all traffic to subscribers based on RAN capacity
- Enables faster and smoother bandwidth utilization
- Adapts quickly to bandwidth changes
- Delivers more consistent sessions
 - Manages minor changes in the RAN better
 - Download traffic less susceptible to uplink traffic
- Reduces requirements & cost of backhaul
- Coexists and improves legacy TCP traffic
- Results in increased throughput, speed of all data sessions, and higher utilization of the Node B

Carrier trials have yielded **15%** increases in capacity utilization

Enhanced User Experiences

 Delivers better video streaming and higher performance for multi-media services

- Provides faster file downloads and uploads, web page access, and e-mail synchronizations
 Especially during busy times
- Reduces frustration from web page time outs
- Improves access and more reliable, consistent connectivity
- Potentially increases battery life
- Provides more choices for billing plans

Recent trialing has yielded **1.3** times faster subscriber experiences

Recent Trial Performance Results

- 15% better RF Utilization Ratio vs TCP
- 1.3x better QoE for typical subscriber usage scenarios
- Faster "time to completion" under all profiles
- Higher utilization ratio for RAN under all profiles
- Sustained higher download performance with RAN upload activity
- Improved TCP traffic on devices not running Mobidia's Dynamic Multimedia Protocol (DMP)

Trialing completed at Tier 1 European Carrier "State of the Art" Facility

Note: Trials were completed in low variable controlled lab environment. Additional testing by carriers in real-world condition yielded even higher results

9

Distributed Traffic Management

- Traffic management on uplink and downlink
 - Protocol-specific, state-based, user-specific traffic flow analysis
 - Encrypted and compressed data management
- Application and service-aware classification
 - More accurate and faster identification of new apps
 - Immediate awareness at the user equipment
 - Prioritization, scheduling, and policy enforcement at the device for bandwidth efficiency
- Innovative billing models
 - Bandwidth-differentiated billing
 - Premium service-based billing

Efficient traffic management to conserve RAN resources

Increased Network Intelligence

 Up-to-Date network intelligence and reporting

- Comprehensive usage data
 - Per subscriber
 - Per application or service
 - Per network
 - Location and Content*
- Real-time and historical data of RAN performance and conditions

Comprehensive understanding of network conditions & subscriber activities

Summary

- Unique, powerful solution for network optimization and traffic management
- Carrier trialing to date has proven 15% better utilization ratio and 1.3x better quality of experience (QoE) advantage over TCP
 - Partnering with major infrastructure vendors
- Trials completed in Europe and US

Mobidia

Enhancing Wireless Data by monitoring, managing & monetizing traffic

<u>www.mobidia.com</u> +1 (604) 304-8640

© Mobidia Technology, Inc. All rights reserved.

APPENDIX

© Mobidia Technology, Inc. All rights reserved.

Mobidia's Deployment Architecture

ROADMAP

© Mobidia Technology, Inc. All rights reserved.

Evolving Platform

Now	1H2009	2H2009	2010
• Released for		 10GB Distributed architecture 	 More performance IPv6 Operator deployed enterprise services
• .Wave ™ • Released for trialing		 Policy integration Per application Real-time policy push 	 Content identification Operator deployed enterprise services WiFi Hotspot Support (w/session continuity)
• Released for		LocationPer Session	 Radio KPI MSDB: subscriber database
Clients Windows XP	Windows Mobile Vista Symbian MAC	RIM iPhone	Windows 7

TRIAL PERFORMANCE DETAILS

18

© Mobidia Technology, Inc. All rights reserved.

Increasing Capacity Utilization

- Challenges with TCP over the Wireless Link
 - Often misinterprets wireless network conditions as congestion and throttles back performance
 - Slow initial ramp up time for all data transfers
 - Very slow to respond to changing bandwidth conditions and network types
- Mobidia's DMP Advantage
 - Shapes all traffic to subscribers based on RAN capacity
 - Delivers more consistent sessions
 - » Manages minor changes in the RAN better
 - » Download traffic less affected by uplink traffic
 - Performs at higher rates due to less sensitivity to latency variations

Trial Conditions & Parameters

- DMP vs TCP Comparison
- Key metric was Time to Completion
- Various "real-world" network loads and usage scenarios
- "State of the Art" testing facility at Tier 1 European carrier
- Automated 3rd party testing Infrastructure (IXIA)
- Tests utilised 6 laptops/users to fully load NodeB

Trial Metric

- Key metric is Time To Completion (TTC) of a test:
 - Neither bandwidth nor throughput metrics take into account
 - inefficiencies of the underlying transport protocols (e.g. retransmissions, packet overhead)
 - » transient nature of the mobile network or traffic patterns
 - Enables common metric to be applied across a variety of test cases.
 - » Complex test cases such as P2P or Web and combinations thereof have many sessions with inter-session dependencies and time gaps

Trial Metric (Cont'd)

- Utilization Ratio (UR): Indication of NodeB utilization for a given test case.
- Formulas used for calculating UR of TCP and DMP:

UR[TCP] = TUD / (MaxPeakRate * TTC[TCP])
UR[DMP] = TUD / (MaxPeakRate * TTC[DMP])

TUD: Total User Data TTC: Time To Completion

Trial Metric (Cont'd)

- DMP advantage (DMPa): Comparative metric between DMP and TCP
- Formula used for calculating DMPa:

```
DMPa = 1 - (TTC[DMP] / TTC[TCP])
```

TTC: Time To Completion

Lab Physical Network Diagram (DMP)

Lab Physical Network Diagram (TCP)

Test Cases

- All cases developed and validated in collaboration with tier1, European operator and aligned with their current and future data traffic
- Test cases developed to reflect dynamic, 'real world' environment
 - Fully loaded NodeB
 - Subscribers dynamically connecting and disconnecting
 - Multiple sessions, smaller files
 - Multiple test runs to account for variability of TCP and RAN
- 10 cases to reflect different but common usage scenarios
 - Most cases included mixed traffic representing users with different usage habits
 - Web browsing
 - Video streaming
 - File transfer (e-mail sync, file sharing, download)

Utilization Ratio: DMP vs TCP

- 10 different test cases run 3 times each
- Measurements taken for utilization ratio (UR) for both DMP and TCP
- DMP's UR is consistently higher for every test case and test pass
- DMP's UR is more consistent for each of the different test cases

UR [TCP] = TUD / (MaxPeakRate * TTC [TCP}) UR[DMP] = TUD / (MaxPeakRate * TTC [DMP])

A higher utilization ratio represents more efficient use of RF resources

Significant Increases in Quality of Experience

- 10 different test cases run 3 times each
- DMP was faster in all runs representing a faster experience for subscribers
- Test cases where users were dynamically connecting and disconnecting to the network yielded the best performance from DMP
 - Which is more aligned with actual behavior
- The most representative case yielded an average of 30% gain
- DMP's advantage increases as more uplink traffic is

DMP delivers web pages, downloads, and videos faster to subscribers

Significant Increases in Quality of Experience

- Graph represents a single snapshot of one of the test passes comparing DMP & TCP
 - But differences in variability were consistently observed in all test cases and passes
- DMP consistently finishes faster than TCP
 - Which increases efficiency
- DMP's traffic is consistently much less variable than TCP traffic
 - Potential savings in backhaul
 - Reduces packet discards in the core network

DMP provides traffic shaping and a much more consistent user experience

More Details on the Test Cases

PLOT / Test Cases	Description
1YouTube_5Web	UE6 is watching a big YouTube video of 50 million bytes whilst the remaining 5 UEs are surfing the web. UE1 and UE6 starts off followed sequentially by UE 2->5 with start times of 10, 20, 30, 40 seconds respectively.
YouTube1UE	Single UE performing a 50 million byte download. This is equivalent to a downlink speed test profile a consumer would execute.
6DDL50MB	All 6 UEs performing identical DDL (Direct Download) of 50MB file. UE1 starts off the test, followed sequentially by UE 2->6 with start times of 25, 45, 65, 100 and 100 seconds respectively.
6DDL50MB15MB	All 6 UEs performing DDL, with UE1 transferring 50MB and the remaining UEs transferring 15MB. UE1 starts off the test, followed sequentially by UE 2->6 with start times of 25, 50, 50, 55, 55 seconds respectively.
YouTubeSeq7	All 6 UEs "watching" an HTTP file of 5 million bytes (typical size of a 2.5 minute music video). UE1 starts off the test, followed sequentially by UE 2->6 with start times of 7, 14, 21, 28, 35 seconds respectively.

More Details on the Test Cases (Cont'd)

PLOT / Test Cases	Description
4YouTubeStack	4 UEs "watching" an HTTP file of 5 million bytes. UE2->5 are participating, all starting off at the same time. This is considered to be the most ideal multi-user test case for TCP.
4YouTubeStack_2Upload	4 UEs "watching" an HTTP file of 5 million bytes. UE2->5 are participating, all starting off at the same time. UE1 & 6 are performing an upload of 3.5 million bytes. UE1 & 6 starts off first to secure the uplink channels, and UE2->5 start 2 seconds later. This test was to study the efficacy of the download when the upstream channel is near capacity. TTC is measured between UE2->5 to enable comparison to the non upload test case.
2DDL40MB25MB_4We b	UE1 & 2 performing large DDL of 40MB and 25MB respectively, and the remaining UE 3->6 are surfing the web. UE1 starts off the test, with UE 2->6 having start times of 10, 10, 10, 15, 15 seconds respectively.
2YouTube_4Web	UE 5 & 6 "watching" 25 million byte, and the remaining UE 1->4 are surfing the web. UE5 & 6 start off the test, with UE 1->4 having start times of 0, 10, 20, 30 seconds respectively.
DblYouTube1UE	Single UE performing two simultaneous 25 million byte downloads.